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Background
Drug-like compounds achieve curative effects through biochemical reactions 
with in-vivo protein molecules such as enzymes, ion channels, G protein-coupled 
receptors(GPCR). Due to the incompletely understanding of drug molecules and the 
diversity of targets, clinical trials for new drug–target interactions (DTIs) have become 

Abstract 

Background:  In research on new drug discovery, the traditional wet experiment has 
a long period. Predicting drug–target interaction (DTI) in silico can greatly narrow the 
scope of search of candidate medications. Excellent algorithm model may be more 
effective in revealing the potential connection between drug and target in the bioin-
formatics network composed of drugs, proteins and other related data.

Results:  In this work, we have developed a heterogeneous graph neural network 
model, named as HGDTI, which includes a learning phase of network node embed-
ding and a training phase of DTI classification. This method first obtains the molecular 
fingerprint information of drugs and the pseudo amino acid composition information 
of proteins, then extracts the initial features of nodes through Bi-LSTM, and uses the 
attention mechanism to aggregate heterogeneous neighbors. In several comparative 
experiments, the overall performance of HGDTI significantly outperforms other state-
of-the-art DTI prediction models, and the negative sampling technology is employed 
to further optimize the prediction power of model. In addition, we have proved the 
robustness of HGDTI through heterogeneous network content reduction tests, and 
proved the rationality of HGDTI through other comparative experiments. These results 
indicate that HGDTI can utilize heterogeneous information to capture the embedding 
of drugs and targets, and provide assistance for drug development.

Conclusions:  The HGDTI based on heterogeneous graph neural network model, can 
utilize heterogeneous information to capture the embedding of drugs and targets, and 
provide assistance for drug development. For the convenience of related researchers, a 
user-friendly web-server has been established at http://​bioin​fo.​jcu.​edu.​cn/​hgdti.

Keywords:  Drug–target interaction, Graph neural network, Molecular fingerprint, 
Pseudo amino acid composition

Open Access

© The Author(s) 2022. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits 
use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original 
author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third 
party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the mate-
rial. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or 
exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://​
creat​iveco​mmons.​org/​licen​ses/​by/4.​0/. The Creative Commons Public Domain Dedication waiver (http://​creat​iveco​mmons.​org/​publi​
cdoma​in/​zero/1.​0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

RESEARCH

Yu et al. BMC Bioinformatics          (2022) 23:126  
https://doi.org/10.1186/s12859-022-04655-5 BMC Bioinformatics

*Correspondence:   
jdzxiaoxuan@163.com 
1 School of Information 
Engineering, Jingdezhen 
Ceramic Institute, 
Jingdezhen, China
Full list of author information 
is available at the end of the 
article

http://bioinfo.jcu.edu.cn/hgdti
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s12859-022-04655-5&domain=pdf


Page 2 of 18Yu et al. BMC Bioinformatics          (2022) 23:126 

time-consuming and required costly investments. Identifying new DTIs through com-
putational approaches can significantly reduce the time and cost required for drug dis-
covery or relocation compared with biochemical experimental methods [1].

At present, the calculation methods for identifying DTIs can be divided into three 
categories, ligand-based, docking simulation, and chemogenomic approaches. Ligand-
based methods [2], like Quantitative Structure-Activity Relationship (QSAR), predict 
the interaction by comparing the similarity of new ligands and known proteins ligands. 
However, ligand-based methods often perform poorly when the number of known bind-
ing ligands for proteins is insufficient. Docking simulation methods [3] require the sim-
ulation of the three-dimensional structure of proteins. Such methods are inapplicable 
when numerous proteins with unknown 3D structure. Chemical genomics methods [4] 
attempt to take advantage of the interaction, similarity and association between drugs, 
proteins and other biomarkers (e.g. disease and side-effect) to construct a unified chemi-
cal genome space [5]. Moreover, these approaches build predictors based on machine 
learning to discover unknown interactions between drugs and proteins. These predictors 
are based on the “guilt by association” assumption where similar drugs may share similar 
targets and vice versa.

Previously, various models utilized machine learning methods to identify DTIs [6], 
such as nearest neighbor methods [7, 8], matrix factorization methods [9], semi-super-
vised learning methods [10]. These methods all directly use the molecular structure 
information of drugs and the sequence information of targets as input features to con-
struct an algorithm model to classify DTIs. Mei et al. [11] advanced the bipartite local 
model (BLM) by adding a neighbor-based interaction-profile inferring (NII) procedure 
(called BLMNII), which learnt interaction features from neighbors to preprocess training 
data. NetLapRLS [12] applied Laplacian regularized least-square (RLS) and integrated 
information kernels from chemical space, genomic space and drug–protein interaction 
into the prediction framework. MSCMF [13] incorporated multiple similarity matrices, 
including the similarity of chemical structure, genomic sequence, ATC, GO and PPI net-
work, to regulate the DTI network. Recently, deep learning technology has been widely 
used, and many methods have achieved substantial performance improvements in DTIs 
by constructing complex neural networks [13–15]. DeepDTA [16] employed CNN 
blocks to learn representations from the raw protein sequences and SMILES strings and 
combine these representations to feed into a fully connected layer block. Lee et al. [17] 
constructed a novel DTI prediction model to extract local residue patterns of target pro-
tein sequences using a CNN-based deep learning approach.

Due to the development of feature extraction technology, many excellent models with 
higher predictive capacity have emerged to cope with the identification problem of drug 
compound and protein sequence [18–21]. In addition to drug molecular structure and 
protein sequence data, drug side effects [22], drug-disease association and target-disease 
association [23] can also be used to improve DTI networks and discover the relationship 
between drugs and proteins from diverse perspectives. In DTINet [24] and NeoDTI [25], 
integrating heterogeneous features from heterogeneous data sources can improve the 
DTI predictive ability of model. However, there are still some unsolved problems con-
cerning these method. In DTINet, separating feature processing and model training may 
lose the optimal solution. NeoDTI utilized random vectors to initialize heterogeneous 
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node features may reduce prediction precision. Besides, it adversely affects the predic-
tion result when NeoDTI fuses neighbor features and ignores the importance of each 
neighbor. Recently, the theory of graph neural network (GNN) [26] has matured, and the 
algorithm framework has gradually enriched, including GCN (Graph Convolution Net-
works), GAT (Graph Attention Networks) [27], GAE (Graph Autoencoders) [28]. Zhang 
et al. [29] proposed a heterogeneous graph neural network (HetGNN), which applies a 
series of aggregation operations to heterogeneous neighbors to obtain the ultimate node 
embedding. This inspired us to build our own model for discovering new DTIs.

In this paper, we present HGDTI model, a heterogeneous graph neural network for 
predicting DTI. Firstly, in the pre-processing step, we sample negative pairs from 
unknown DTI pairs by employing negative sampling technology. Then, HGDTI uses 
LSTM to abstract content of the node (e.g. drug, protein, disease, and side-effect), and 
extracts the final embedding of drugs and proteins by aggregating the contents of het-
erogeneous neighbors. Finally, the obtained drug and protein embeddings are used to 
predict DTI through a fully connected neural network. The entire learning and predic-
tion process is an end-to-end workflow. Hence, it is possible to obtain the feature repre-
sentation of drugs and targets closest to the DTI network. Through comprehensive tests, 
we compare the performance of DTI prediction between HGDTI and other state-of-the-
art predictors. In addition, the robustness and extendability of HGDTI are inspected by 
testing partial heterogeneous networks. Overall, HGDTI can integrate more heterogene-
ous data sources to provide more accurate results for DTI prediction, which may also 
provide a better solution for drug discovery and repositioning.

Methods
DTI problem formulation

In this work, the dataset is a heterogeneous graph composed of various nodes and edges. 
Nodes include drugs, proteins, diseases, and side effects. Edges include interactions, 
similarities, and associations. Our model learns embedded representations of drugs and 
proteins from this graph to predict DTIs. Next, the definition of heterogeneous graph is 
given.

Definition HG (Heterogeneous Graph). HG is defined as an undirected graph 
G = (V ,E,OV ,RE) , where V is the node set, E is the edge set, the object type of each 
node v ∈ V  belongs to the object type set OV  , the relation type of each edge e ∈ E 
belongs to the relation type set RE . Besides, we define that C(v) ∈ R

|V |×dim (dim: fea-
ture dimension) maps the initial feature set of nodes, F(v) ∈ R

|V |×dim indicates final 
embeddings.

The node type set OV  includes drug, target, side-effect and disease. The link type set 
RE is composed of drug-similarity-drug, drug-interaction-drug, protein-similarity-pro-
tein, drug-interaction-protein, drug-association-disease, etc., total 8 types (as shown in 
Fig. 1, also available See “Datasets” section). It is noted that all nodes are connected via 
interaction, similarity, or association edges with non-negative weight We . Among that, 
interaction edge or association edge with value 1. In addition, the edge weight between 
two “unrelated” nodes is set to 0, such as unknown DTIs. Besides, there are two edges 
connected between two nodes simultaneously. For example, two drugs are connected 
through the drug-similarity-drug edge and drug-interaction-drug edge.
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Embedding learning

In the graph network, the embedding learning model is to use the topology structure 
and the content information of the node in the network to obtain the final representation 
of the node. For example, DeepWalK [30], node2vec [31] and metapath2vec [32] employ 
random walk strategies to get the context sequence of the node in the network and learn 
node embedding with the help of word2vec [33]. struc2vec [34] leveraging local network 
structure information to differentiate node representation. GCN [26], the graph neural 
network version of CNNs, aggregates local (i.e. adjacency) context information of the 
node through a series of convolution operations. Different from the random walk strat-
egy and simple convolution operation in the above methods, HGDTI only considers the 
first-order relationship (i.e. direct relationship) between nodes and convolves the infor-
mation of adjacent neighbors. Moreover, in order to distinguish the importance of dif-
ferent types of neighbors, different weights are set for different types of neighbors during 
the aggregation process.

Pre‑processing

In the actual training scenario, the number of known DTIs is much lower than 
unknowns. Such an extremely unbalanced dataset brings incredible difficulty to DTI 
network prediction. A solution is to employ random sampling to construct negative 
samples from unknown DTIs. Nevertheless, this way may reduce the accuracy of predic-
tion and treat unknown drug–target pairs that exist possible interactions as non-interac-
tions. A previous research by Liu et.al. [35] demonstrated the correctness of negative 
samples sampling method directly affected the prediction performance. Recently, Eslami 
et.al. [15] also utilized a similar method to preprocess the negative sample dataset and 
obtained remarkable experimental results. Similarly, we screen out reliable negative 
samples. The screening basis is that drugs that are not similar to or do not interact with 
all drugs corresponding to the target in known DTIs are unlikely to interact with the tar-
get and vice versa. Firstly, we denote the drug set D and the target set T, sort out the 

Fig. 1  Dataset: a heterogeneous graph with different nodes and edges
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target list Tdi(di ∈ D) corresponding to each drug di and the drug list Dtj

(

tj ∈ T
)

 corre-
sponding to each protein tj from known DTIs, respectively. Secondly, give drug matrix 
A ∈ R

|D|×|D| representing DDS matrix (i.e. drug-drug chemistry similarity matrix), and 
target matrix B ∈ R

|T |×|T | representing PPS matrix (i.e. protein–protein sequence simi-
larity matrix). Then, define reliable score sij of the drug–target pair 

(

di − tj
)

 in unknown 
DTIs. Define sDTij =

∑

tk∈Tdi
Btjtk , that sum up the similarity between the target list Tdi 

that interact with drug di and target tj . Similarly, define sTDji =
∑

dk∈Dtj
Adidk , which sums 

up the similarity between the drug list Dtj that interact with target tj and drug di . Finally, 
a reliable score sij between drug di and protein tj is computed as:

The negative candidate pairs are arranged in descending order according to the reliable 
score calculated by the above formula, and the high score is selected as the reliable nega-
tive DTIs. Sample a certain number of unknown DTIs as negatives and known DTIs as 
positives to form the complete data set for subsequent model training and testing.

Representing drug molecules with the 2D molecular fingerprint

HGDTI leverages the molecular fingerprint approach to extract the initial feature of 
the drug, which is frequently employed in drug-related prediction problems [36–39]. 
Molecular fingerprint is a method of binary coding of molecular structure to describe 
the presence or absence of particular substructures. Xiao et.al. [37] has given a crystal 
clear description of how to obtain the molecular fingerprint of the drug compound, and 
hence there is no need to repeat here. It is noted that we download the SMILES file of the 
drug from https://​go.​drugb​ank.​com/. Drug molecular fingerprint C

˜d
 is represented as a 

256-digit hexadecimal string. In particular, the optimal dimension dim of drug feature 
Cd in HGDTI is 128 (See “Hyperparameter Selection” section). Therefore, the dimension 
of Cd needs to be reduced. Generally, the feature size reduction methods include embed-
ding and fully connection. Here the average approach is adopted. Formally, the content 
feature of drug d is computed as follows:

where C
˜d
[0 : 127] and C

˜d
[128 : 255] stand for the pre-128 bits and the post-128 bits of 

C
˜d
 respectively.

Representing protein sequences with pseudo amino acid composition

Pseudo amino acid composition(PseAAC) [40] can capture the amino acid composition 
information of protein sequence and preserve the sequence-order information. Above 
all, there are ten kinds of physical and chemical properties representing protein proper-
ties [37] to convert protein sequences into real strings. HGDTI chooses hydrophobic-
ity, hydrophilicity and side-chain mass as three types of amino acid properties, and the 
dimension of protein feature vector C

˜t  is set to 64. For the specific calculation method, 
refer to PseAAC or visit https://​ifeat​ure.​erc.​monash.​edu/. Finally, we elevate the optimal 

(1)sij = e
−

(

sDTij +sTDji

)

(2)Cd =
C
˜d
[0 : 127] + C

˜d
[128 : 255]

2

https://go.drugbank.com/
https://ifeature.erc.monash.edu/
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dimension of protein feature Ct to 128, and the duplicate concatenation method is 
adopted. Thus the content feature of target t is formulated as:

The operator 
⊕

 denotes concatenation.

The workflow of HGDTI

HGDTI consists of the following four main steps: (1) node features encoding; (2) homo-
geneous neighbors aggregation; (3) heterogeneous neighbors aggregation; (4) predictor 
training process. Steps(1-3) are to learn the node embeddings that encode both hetero-
geneous neighbors and itself characteristic contents. Step(4) is a deep neural network 
classifier, which is used to predict DTIs by training the node embedding to obtain a 0-1 
threshold. Next, we will introduce the algorithm formula for each step in detail. The 
whole process is illustrated in Fig. 2.

Step 1: Node Features Encoding. We have defined the initial features of nodes as C(v) , 
where the drug feature Cd is extracted from the molecular fingerprint, the protein fea-
ture Ct is extracted from PseAAC, the disease and side-effect features are represented by 
parameterized 0-1 standardized stochastic vector [25] to learn the optimal representa-
tion and speed up convergence. In this step, we define a submodule based on bi-direc-
tional LSTM (Bi-LSTM) [41] to capture “deep” feature interactions and obtain more 
abstract nonlinear expressions. The feature encoding for node v is defined as:

where f1(v) ∈ R
dim×1 (dim: feature dimension), the operator ⊕ denotes concatenation. 

Bi-LSTM block treats each one-dimensional input (vector) as a sentence with only one 
word ( 1× dim tensor). Overall, the above formula uses Bi-LSTM to extract the general 
content embedding of v, as illustrated in Fig. 2a. Note that single feature C(v) can flexibly 
extend the model by adding other features (e.g. the physical and chemical properties of 
drugs [42], the PSSM profile of proteins [43]) for weighted average. In particular, four Bi-
LSTM models are utilized to extract the content of different types of nodes respectively.

Step 2: Homogeneous Neighbors Aggregation. In this step, we design a submodule 
that aggregates heterogeneous adjacent node features. Nr(v) = {u,u ∈ V ,u �= v, r ∈ RE} 
denotes neighbor set that links to node v via edges of type r. Then, we employ an aggre-
gated function Gr to fuse features of u ∈ Nr(v) . Gr is a weighted summation that is not 
alike from neighbors aggregation approach of HetGNN [29], which treats all edges as 
equal. Formally, the aggregated embedding of Nr(v) is defined as:

where Gr ∈ R
dim×1 (dim: feature dimension), f1(u) is feature encoding of node u which 

is calculated by step(1), We is a non-negative weight which represents a score of edge 
e. Mr(v) =

∑

u∈Nr (v),e=(v,u,r)We stands for a normalization term. To be more specific, 
r-type aggregated embedding for node v is summed by same type neighbors feature to 

(3)Ct = C
˜t ⊕ C

˜t

(4)f1(v) =
−−−→
LSTM{C(v)} ⊕

←−−−
LSTM{C(v)}

(5)Gr(v) =
∑

u∈Nr (v),e=(v,u,r),r∈RE

We
f1(u)

Mr(v)
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multiply by ratio which is the normalized weight (e.g. We
Mr (v) ) with respect to edges of type 

r.
Step 3: Heterogeneous Neighbors Aggregation. Continue to the previous step, we 

have got the aggregated embedding Gr(v) with respect to edge-type r for node v. Tak-
ing into account that heterogeneous nodes have different degrees of impact on the final 
embeddings, we employ the attention mechanism [27] to incorporate the aggregated 

Fig. 2  a Encode each node feature via BiLSTM. b Aggregate neighbors to obtain drug and protein 
embedding, predict label via a two-layers neural network, finally optimizes the model via a cross-entropy loss
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embedding Gr(v) with the initial feature C(v) of node v. Formally, the final embedding of 
node v is formulated as follow:

where F(v) ∈ R
|V |×dim ( |V | : node size, dim: feature dimension), α∗ (e.g. αv , αr ) indicates 

influence level for the final embeddings. Then, we define ϕ(v) that stands for C(v) and 
Gr(v) , the i-th weight factor αi =

exp
{

LeakyReLU
(

uTϕi
)}

∑

ϕj∈ϕ(v)
exp{LeakyReLU(uTϕj)}

 , αi ∈ α∗ . Among them, 

LeakyReLU denotes a leaky version of a Rectified Linear Unit, u ∈ R
2dim×1 is the atten-

tion parameter.
Our task is to predict the drug–target interaction. In the final prediction step, only the 

final embeddings of drug and target are involved. Therefore, node v in steps(2-3) refers 
to drugs and targets.

Step 4: DTI Classification. To determine whether there is an interaction between the 
drug–target pair, we employ a fully connected neural network to train the drug embed-
ding Fd(u) and the protein embedding Ft(v) and predict DTIs. Thus, the predict prob-
ability function O is defined as follow:

where FC1 and FC2 form a two-layer fully connected neural network that performs a lin-
ear transformation on embeddings, ReLU (Rectified Linear Unit) indicates nonlinearity 
capability of the model. The operator ⊕ denotes concatenation between the drug embed-
ding and the protein embedding to obtain 2× dim dimension embedding, which is the 
input of first layer FC1 . Specifically, FC1 has dim/2 neurons which are connected to each 
dimension of the input embedding, FC2 that the final output layer contains only one 
neuron corresponding to output result which is fully connected to the previous layer, 
sigmoid stands for a nonlinear activation function that projects from the result of a final 
layer onto DTI probability. Steps(2-4) are shown in Fig. 2b.

At last, we adopt cross-entropy loss function that calculates the difference between 
DTI probability and drug–target pair label.

In general, all the above steps can be trained through an end-to-end manner by per-
forming Adam optimizer [44] and 0.001 learning rate to minimize the final loss func-
tion and update the model parameters. We repeat the training iterations until the change 
between two consecutive iterations is less than the threshold. The entire framework is 
implemented on the PyTorch platform and GPU hardware.

Data and experiment
Datasets

The datasets are collected from previous research [24], include 4 types of nodes 
and 8 types of edges. Specifically, 708 drugs, 1,923 known DTIs as well as drug–
drug interaction network have been extracted from DrugBank (Version 3.0) [45]. 
1,512 proteins and protein–protein interaction network have been extracted from 
the HPRD database (Release 9) [46]. 5,603 diseases, drug-disease association and 
protein-disease association networks have been extracted from the Comparative 

(6)F(v) = αvC(v)+
∑

r∈RE

αrGr(v)

(7)O = sigmoid(FC2(ReLU(FC1(Fd(u)⊕ Ft(v)))))
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Toxicogenomics Database [47]. 4,192 side-effects and drug-side-effect association 
network have been extracted from the SIDER database [48]. In addition, 364 side-
effects and 161 diseases are isolated. Besides, we adopt two similarity information, 
a drug-structure similarity network (i.e. a pair-wise chemical structure similarity 
network measured by the dice similarities of the Morgan fingerprints with radius 
2, which have been computed by RDKit [49]), and a protein sequence similarity 
network (which have been obtained based on the pair-wise Smith-Waterman score 
[50]). The datasets have been utilized in previous researches [15, 25]. As shown in 
the statistics in Table 1, tests a-f same as in NeoDTI [25] corresponds to Figs. 4 and 
5.

Reliable negatives

In the original dataset, the vast majority of DTIs are unknown, including potential 
DTIs and non-DTIs. Unlike the previous model which treats all unknown DTI pairs 
as negative samples, we consider selecting the “correct” unknown DTI pairs as nega-
tive samples as much as possible. We employ negative sampling technique (See “Pre-
processing” section) to calculate reliable scores between drugs and targets, and divide 
reliable negative samples according to the distribution of reliable scores of drug–tar-
get pairs (Fig. 3). As the figure, the reliable scores of unknown DTIs are mainly con-
centrated around 0 score and 1 score. Combined with specific numerical analysis, we 
choose DTI with a reliable value greater than 0.1 as a negative sample, which is equiv-
alent to nearly half of the unknown in benchmark (Fig. 3a), 30% in non-unique and 
80% in unique (Fig. 3b).

Table 1  Dataset statistic of each comparison experiment

Positive Training set Validation set Test set

test a 1923 18085 952 2116

test b 968 9103 480 1065

test c 1557 14643 771 1713

test d 1872 17605 927 2060

test e 1126 10589 558 1239

test f 1551 + 372 (test) 16207 854 4092

Fig. 3  Unknown DTIs reliability distribution. a Benchmark unknown DTIs reliability distribution. b 
Non-unique and unique unknown DTIs reliability distribution
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HGDTI yields significant capability for DTIs prediction

For the sake of comparing HGDTI with the previous state-of-the-art DTI prediction 
methods, we use the same dataset and the 10-fold cross-validation method. To mimic 
this scenario that only a minimal number of drug–target pairs are known DTIs in 
the practical situation, we sample all positive samples (known DTIs) and negative 
samples, which are selected based on the method explained in “Reliable negatives” 
section, in which negative samples are 10 times that of positive samples. During the 
experiment, the dataset will be cross-cut by hierarchical sampling to ensure that the 
proportions of various samples in the training set and test set are the same as the orig-
inal dataset. The dataset is divided into 10 non-overlapping subsets according to the 
ratio (i.e. 1:10) of positive and negative samples in the original data set, 9 subsets are 
used as the training set and the remaining 1 subset is used as the test set. Like other 
predictive methods, we employed the Area Under Receiver Operating Characteristic 
(AUROC) curve and Area Under Precision-Recall (AUPR) curve to evaluate predic-
tion performance for all methods. In general, ROC curves present the trend between 
true positive rate (TPR) and false positive rate (FPR), and PR curves reveal the trend 
between precision and recall using several classification thresholds. AUPR is more 
sensitive than AUROC for extremely skewed datasets. Therefore, the predictive abil-
ity of model can be better explained in such a scenario. Since random sampling will 

Fig. 4  Comparison results of HGDTI with other state-of-the-art models in several exploratory experiments in 
terms of the AUPR scores. a A 10-fold cross-validation test in which the ratio between positive and negative 
samples is set to 1 : 10. b–e Ten-fold cross-validation with positive: negative ratios = 1 : 10 on several 
scenarios of removing redundancy in data. b Remove DTIs with similar drugs and proteins. c Remove DTIs 
with drugs sharing similar drug interactions. d Remove DTIs with drugs sharing similar side-effects. e Remove 
DTIs with drugs sharing similar disease. f Non-unique train set and unique test set. All results are summarized 
over 10 trials and expressed as mean ± standard deviation
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cause jitter in the prediction results, we randomly select 10 sets of samples through 
10 fixed second-level random seeds generated from a first-level random seed “10”. The 
second-level random seeds are shown in Table 2. The final result is summarized over 
10 trials and expressed as mean ± standard deviation.

We compare the performance of HGDTI with six predictive models, including 
NeoDTI [25], DTINet [24], MSCMF [13], NetLapRLS [12] and BLMNII [11]. The 
result of the comparison shows that HGDTI remarkably outperforms other mod-
els, with 11.1% higher AUPR and 4.5% higher AUROC than the second-best method 
(Figs. 4a, 5a). DTINet generates low-dimensional features representing the structure 
of nodes in context through a network diffusion algorithm (random walk with restart, 
RWR). HGDTI adopts the fingerprint features of drug molecules and the PseAAC 

Fig. 5  Comparison results of HGDTI with other state-of-the-art models in several exploratory experiments 
in terms of the AUROC scores. a A 10-fold cross-validation test in which the ratio between positive and 
negative samples was set to 1 : 10. b–e Ten-fold cross-validation with positive: negative ratios = 1 : 10 on 
several scenarios of removing redundancy in data. b Remove DTIs with similar drugs and proteins. c Remove 
DTIs with drugs sharing similar drug interactions. d Remove DTIs with drugs sharing similar side-effects. e 
Remove DTIs with drugs sharing similar disease. f Non-unique train set and unique test set. All results were 
summarized over 10 trials and expressed as mean ± standard deviation

Table 2  Second-level random seed list

No.1 No.2 No.3 No.4 No.5

Seed 265 125 996 527 320

No.6 No.7 No.8 No.9 No.10

Seed 369 123 156 985 733
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features of proteins, and enhances feature learning through the neighborhood aggre-
gation of nodes. Comparing with NeoDTI, HGDTI uses weighted aggregation of het-
erogeneous neighbors and utilizes reliable negative samples. The process of searching 
the hyperparameter of feature dimension in these baseline methods can be found in 
“Hyperparameter selection” section.

The original dataset may contain approximate samples (i.e. sharing homologous 
proteins and similar drugs between know DTIs), which may affect the veracity of the 
predictive power by easy predictions. To explore this issue, we perform the follow-
ing additional tests (Figs.  4b–e, 5b–e): (1) the removal of DTIs with similar drugs 
(i.e. drug chemical structure similarities > 0.6) or homologous proteins (i.e. protein 
sequence similarities > 0.4); (2) the removal of DTIs with drugs sharing similar drug 
interactions (i.e. Jaccard similarities > 0.6); (3) the removal of DTIs with drugs shar-
ing similar side-effects (i.e. Jaccard similarities > 0.6); (4) the removal of DTIs with 
drugs or proteins sharing similar diseases (i.e. Jaccard similarities > 0.6). In the above 
experimental scenarios, we adopt the same positive and negative sample ratio and the 
uniform 10-fold cross-validation method. All test results demonstrate that HGDTI 
still remarkably outperforms other prediction methods after the removal of redun-
dant samples, which also certifies the stability of HGDTI.

In addition, we also conducted comparative experiments on “unique” data, in which 
drugs interact with only one target and vice versa. In that, the unique DTIs prediction 
lacks sufficient neighbors. To assess the performance of DTIs prediction methods 
in this scenario, we split the dataset into non-unique DTIs and unique DTIs, which 
are used in the training phase and the test phase respectively, and the ratios between 
positive and negative remain unchanged. We detect that HGDTI is unsatisfactory in 
terms of AUPR (Fig.  4f ), which indicates that HGDTI is not suitable for improving 
model performance by capturing rich neighborhood information in sparse networks.

It can be seen that discrete nodes that are more extreme than “unique” have worse 
prediction results, which is also the limitation of graph neural networks. Therefore, 
for new drugs and new targets that are not in the graph HG, HGDTI cannot aggregate 
the multi-source information around the node, resulting in unsatisfactory predictive 
performance.

Fig. 6  Optimal dimension of feature. All results were summarized over 10 trials and expressed as mean ± 
standard deviation



Page 13 of 18Yu et al. BMC Bioinformatics          (2022) 23:126 	

Hyperparameter selection

All node features adopt a uniform dimension d ∈ 64, 128, 256 . To determine the opti-
mal representation dimension of feature, we randomly divide the training set into 5% 
as the validation set to select the best hyperparameter. The result is shown in Fig. 6. 
When d = 64, 128 and 256, the corresponding AUPR scores were 0.899, 0.961 and 
0.585 respectively, while the corresponding AUROC scores were 0.946, 0.979 and 
0.795 respectively. Consequently, HGDTI has the best prediction effect and the small-
est variance result when d = 128.

The rationality of negative sampling technique

In order to prove that the superiority of the HGDTI algorithm is not contributed by 
the negative sampling technique, we compare the second-best NeoDTI with HGDTI 
under the condition of the negative sampling technique. As presented in the results, 
HGDTI outperforms NeoDTI by 1.7% in terms of AUPR and 0.9% in terms of AUROC 
(Fig. 7a). At the same time, we test the performance of HGDTI without negative sam-
pling technology on several scenarios (Fig. 7b–f ). In the first test, we observe a sig-
nificant improvement (4.5% in terms of AUPR and 1.3% in terms of AUROC) over the 
second-best NeoDTI. These results indicate that under the same sampling conditions, 
the power of HGDTI to identify DTI is better than other models, and negative sam-
pling technology can further narrow the prediction range of model.

Fig. 7  Verify the impact of negative sampling technique (NS) in terms of the AUPR and AUROC scores. A 
10-fold cross-validation test in which the ratio between positive and negative samples is set to 1 : 10. a 
The second-best NeoDTI with NS. b–f HGDTI without NS in several exploratory experiments. All results are 
summarized over 10 trials and expressed as mean ± standard deviation
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To study the impact of negative sampling technology on the classification ability of 
HGDTI, we further achieve model’s DTIs prediction results using random sampling. 
As expected, model’s ability to identify DTIs dropped prominently by 6.9% in terms of 
AUPR and 3.4% in terms of AUROC (Fig. 8). The importance of negative sampling tech-
nology is self-evident.

Robustness of HGDTI

In the following section, we would like to discuss the robustness of model and the cor-
rectness of design. Above all, we further explore the influence of integrating multiple 
heterogeneous data on DTIs prediction. The experimental data is formed by deleting 
heterogeneous networks on the basis of the benchmark dataset, and the experimental 
evaluation method remains unchanged. We first remove the side-effect network, and 
model prediction results decrease slightly with 0.9% in terms of AUPR and 0.5% in terms 
of AUROC (Fig.  9a). Then contrast the experimental results of removing the drug or 
protein interaction network in the heterogeneous network (Fig. 9b). Subsequently, the 
disease network is removed from the benchmark dataset, and the evaluation metric is 
significantly reduced by 2.0% in terms of AUPR and 1.2% in terms of AUROC (Fig. 9c). 
The contrast of these experiments indicates that the fusion of different individual net-
works can more accurately express the characteristics of drugs and targets and improve 
the performance of DTIs prediction.

In the benchmark dataset, we find that the effective representation of the node itself is 
missing. In order to complement the features of drugs and proteins, HGDTI introduces 
drug molecular fingerprint features (“Representing drug molecules with the 2D molecu-
lar fingerprint” section) and protein pseudo-amino acid composition information (“Rep-
resenting protein sequences with pseudo amino acid composition” section). We further 
investigate the effect of these features on the model. The experimental results show that 
the absence of molecular fingerprint information leads to 9.7% reduction in the AUPR 
metric and 3.7% decrease in the AUROC metric, and the absence of pseudo-amino acid 
component results in loss with 13.7% in the AUPR metric and 6.9% in the AUROC met-
ric (Fig.  9d), which sufficiently proves the contribution of molecular fingerprint and 
pseudo-amino acid component to the predictive ability of HGDTI.

Fig. 8  Comparison result of negative sampling with random sampling in terms of the AUPR and AUROC 
scores. All results were summarized over 10 trials and expressed as mean ± standard deviation
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Fig. 9  Remove HGDTI’s drug or target-related information can reduce predictive performance. a Remove 
drug-side-effect association network. b Remove drugs and proteins interaction networks. c Remove disease 
association networks. d Remove drug fingerprint and protein PseAAC. All results are summarized in 10 trials 
and expressed as mean ± standard deviation

Fig. 10  Comparison result of different aggregation layers in terms of the AUPR and AUROC scores. All results 
were summarized over 10 trials and expressed as mean ± standard deviation
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According to Henaff’s conclusion [51] that higher layers have lower performance, we 
only construct one layer of neighborhood aggregation. To illustrate the correctness of 
the structural design, we experiment with the effect of various neighborhood extents on 
predictive capability. The comparison (Fig.  10) reveals that the aggregation operation 
significantly improves the performance, but the results decrease slightly as the aggrega-
tion layer deepens. The fifth-order aggregation has only more than 1% AUPR difference.

Conclusion
We have proposed a DTI prediction methodology, called HGDTI, to learn the embed-
ding of drugs and targets hidden in various heterogeneous network and input into 
a fully connected neural network to predict DTIs. The entire framework is divided 
into a feature learning neural network and a label prediction neural network. By 
optimizing the parameters of HGDTI through an end-to-end approach, the former 
can capture more reliable features, and the latter can predict closer labels. After sev-
eral realistic test scenarios, it is proved that HGDTI is superior to other methods in 
terms of prediction performance and can integrate more heterogeneous networks to 
improve prediction accuracy. Moreover, negative sampling technology can further 
narrow the prediction range. In general, HGDTI can be utilized as an excellent tool 
for computational drug discovery and drug repositioning.
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